NOTATION

Dp, mean bubble diameter across the bed; D, column diameter; k, k;, k., dimensionless
coefficients; g, gravitational acceleration; u, ue, velocity of filtration and velocity at
initiation of fluidization; H, Ho, height of bed and height of motionless bed; h, vertical
height above gas-distribution grid; p = H/Ho, expansion of bed; Fr = (u — u,)?/gHo, Froude
number; ug, Vg, ;Ba absolute rate of bubble rise, relative rate of bubble rise, and relative
rate of bubble rise averaged across the bed; Up, ¥y, local values of bubble velocities; d,
diameter of solid particles; eo,, bed porosity at initiation of fluidization.
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CALCULATION OF CHARACTERISTICS OF A DIRECT-CURRENT
ARGON ARC

A. 8. Sergienko and G. A. Fokov UDC 533.9.082.15

The radial temperature profile of a cylindrical -argon arc is calculated by a method
based on an elliptical approximation of the function o(S).

Article [1] presented the results of a study of static volt—ampere characteristics of
a dc argon arc burning in a cylindrical channel formed by a set of water-cooled electrically
neutral copper sections with inner diameter of d = 6 mm. The current varied from 30 to 110
A at an argon flow rate of G = 0.03 g/sec.

For various practical applications it is important to theoretically calculate the tem-
perature distribution over the section of the arc conductive channel. If we consider that
the electrical energy introduced into a unit volume of cylindrically symmetric positive arc
column is absorbed by the channel wall solely due to thermal conductivity, then the energy
balance equation will have the form [2]

. _ﬁ_<x£):0
oF* + r dr dr ’ (L
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Fig. 1. Conductivity o, 10? (Rem)~', thermal conductivity

A, 10® kW/(medeg), and thermal conductivity function S, kW/
m, versus temperature T, 10® °K, for argon plasma at p = 10°

N/m? [3, 4].

Fig. 2. Elliptical approximation of the function o(S) for
argon at p = 10° N/m*, o= 10° (Qem)~*, and S = 10° W/m.

In view of the nonlinear dependence of ¢ and A on T (Fig. 1), solution of Eq. (1) is
difficult. Introduction of the thermal conductivity function
T
S= U(T) dT
0
transforms the original equation to the form

d
G(S)Ez—}——l—i(f _S_):(), (2)
r dr dr
The difference between various existing methods for solution of Eq. (2) lies in the meth-.
od used for approximating the function o(S).

In Steenbeck's channel model [5] it is assumed that the arc consists of two regions: a
conductive region (¢ > 0) and a nonconductive one (¢ = 0). In the conductive region the tem-
perature and electrical conductivity are comnstant. In Maecker's linearization method [6],
0(S) is approximated in the conductive region by an inclined straight line, i.e., a certain
dependence of temperature on radius is considered. In Zarudi's quasichannel model {71, in
contrast to the channel model, it is assumed that the temperature is dependent on radius,
while the electrical conductivity, as in the channel model, is constant.

The above methods permit a quite rapid approximate calculation of the thermal and elec-
trical characteristics of electric arcs.

A much better approximation to the exact solution is given by the linear-piecewise method
of [8] and the step approximation of [7]. The first of these is based on substituting a dis-
continuous line for the function o(S). Its application requires solution of a system of
transcendental equations. From a practical viewpoint the step approximation is more conve-
nient, with calculations being performed by recurrent formulas.

It is characteristic of all these methods that one must establish beforehand an upper
limit to the approximation interval. In the quasichannel model, for example, the mean elec-
trical conductivity is calculated from the formula [7]

Sa

om = { 0(S)dS/(s,— sp), (3)
0
where S, and Sy, are the values of the thermal conductivity function on the axis and at the
boundary of the conductive channel. With change in burning conditions the procedure for ap-
proximating o(S) must be repeated.

To simplify the calculation of arc characteristics the authors have employed an ellip-
tical approximation of the function o(S), which is performed a single time for a given type
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% Fig. 3. Auxiliary function fo(uo).

0 o4 g6 Uy

of gas at given pressure. The approximation parameters are the semiaxes A and B of the el-
lipse and the coordinates of its center S, and oc. Let the semiaxis B coincide with the ab-
scissa; then o, = 0 and the approximating formula is written in the form

a=a)/ 1— (igi) ()

We can determine A, B, and Sp if values of the thermal conductivity function 8;, Sa, and Sj
corresponding to fixed values of electrical conductivity o,, 02, and o3 are known (Fig. 2).
We choose the value 0, by the condition 203 = o} + o%. Solving the system of equations

/S — 8. \2
= CT R =1, 2
‘.1 l/ 1—— (T) » 14 11 ] 31 <5)
we obtain formulas for calculating S,., A, and B:

S74 85 —2S;
Sc = ' 6
¢ 2(8,+ S,—28,) (6)
r’i:“// 03 (Se¢—81)*— 0, (Sc — Sy)* , N

(Sc "‘81)2 —(S(-;“Sa)2

Se—=Ss (8)

‘l/-Aa 'o

The S, should be chosen from the condition S; = 0.1S3;. In this case, cf(Sc - 85)% « Ug(Sc-
S,)? and Eq. (7) takes on the form
A= 03(Sc— Sy). ) ' (9)
1/(Sc - Sl)2 - (Sc - 53)1
) Substituting Eq. (4) in Eq. (2), we obtain the energy balance equation in the conductive
region:

" ' AE’

.1
u -+~ —u —
r

V1i—u* =0, (10)

where
U=u{S)= ——5—, (11)

and differentiation is performed with respect to r.

Averaging the function f = V1 — u® over the interval [uo = u(Sg), up = ulSy) = 1], we
have

i

1
j V1—uldu S (—EL ——arcshluo——z%~vfl —ug ), (12)

1—«u0 2(1—u,) \ 2

where fo is the desired mean value. The function fo(u,) is presented in Fig. 3.

With consideration of Eqs. (11) and (12), energy balance in the arc is described by the
following equations
1 AE? " 1
u—t——;—u—BﬁfOWO for 6>Q, u'-- — /=0 for 0=0. (13).
P ?
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Setting boundary conditions

S(0) =S S(ryy=8p=8,—B, S(R) =0,
from Eq. (13) we find ‘

S = 84— 0.25 AE*ff* for r<§, (14)
Inr/R
= for < f< y 15
b Ing/R H<r<R (15)
where the radius of the conductive region is calculated from the formula
—Sp
r,= Rexp [————————~———] , (16)
2(Sp—Sa)

which is obtained from Eqs. (14) and (15) with consideration of the continuity of thermal
flux on the interregion boundary.

The formula for calculation of arc electric field intensity

2 7S;— Spb
E= " a = 17
y T, an
follows from Eq. (14) if we take r = rp.
It also follows from Eq. (14) that
[ A Sa—S) (18)
E
inasmuch as
ds ____IE
dr |r=rp 2ary

If S, is unknown, but the intensity E and current I are given, then the axial value of
the thermal conductivity function is calculated, according to Eq. (18), from the formula

EI
= Sh + = (19
Sg=3Sp + i

In form, Eqs. (14)-(18) coincide with those of the quasichannel model [7]. They differ
in that, instead of op, there appears in Eqs. (14)-(18) the quantity Af,. Upon comparison of
Eq. (3) with (4), (11), and (12) it may be seen that Af, for every S, is equal to op to an
accuracy determined by the approximation of o(S) by the elliptical arc — Eq. (4).

The method described was used to calculate temperature distribution over the channel
section of the plasmotron described above for d = 6 mm and number of sectionsng=6. Electric
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field intensities of E = 636, 673, 730, 795, and 860 V/m were found from the experimentally
determined volt—ampere curve [1] for fixed current values of I = 30, 50, 70, 90, and 110 A.

The results of calculation of the temperature distribution T(r), presented in Fig. 4,
are close to those of a numerical solution by the step approximation method. The following
values of approximation parameters were used: A = 6342 (Qem)~', B = 7797 W/m, and S. = 8292
W/m. These values ensure a good approximation of the function ¢(S) for § values not exceed-
ing 8000 W/m, which corresponds to a temperature of T =~ 15,000°K.

In conclusion, it should be noted that the proposed method, being an analog of the coarse
linearization method (quasichannel model), has the advantage that calculation of auxiliary
parameters is significantly simplified.

NOTATION

T, temperature; o, electrical conductivity; r, radial coordinate; d = 2R, diameter of
discharge channel; A, thermal conductivity; S, thermal conductivity function; p, pressure;
E, electric field intensity; I, current; A, B, S., parameters of approximation ellipse; G,
gas expenditure; u, auxiliary variable; f, auxiliary function. Indices: b, boundary; «,
axial.
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HEAT AND MOISTURE TRANSFER BETWEEN A FRESHLY EXPOSED
ROCK MASS AND A VENTILATING AIR JET

0. A. Kremnev, V. Ya. Zhuravlenko, : UDC 536.24:539.217.2
E. M. Kozlov, and V. A. Shelimanov

The problem of heat and moisture transfer between an infinite isotropic rock mass
and a ventilating air jet of constant temperature is considered. Equations are de-
rived for the temperature- and moisture~transfer potential fields. Nomograms are
presented for calculating the heat and moisture flows.

Coal mines are now sunk to depths of 1000-1100 m. In view of the current increase in
the mining of coking coals the working depth is likely to increase still further. 1In order
to create normal labor conditions in deep shafts it is essential to introduce a system of
air-cooling and to improve methods of calculating the thermal characteristics of mines.

Existing methods of calculation '[1, 2] are based on solving the problem of transient
heat transfer between the ventilating jet and the rock mass surrounding the working.

Translated from Inzhenerno~Fizicheskii Zhurnal, Vol. 32, No. 4, pp. 643-648, April,
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